Antimicrobial Hydrogel Destroys Superbugs

January 25, 2013 – 5:17 am

Researchers from the Institute of Bioengineering and Nanotechnology (IBN) and IBM Research unveiled the first-ever antimicrobial hydrogel that can break apart biofilms and destroy multidrug-resistant superbugs upon contact. According to a press release issued by the institute, tests have demonstrated the effectiveness of this novel synthetic material in eliminating various types of bacteria and fungi that are leading causes of microbial infections, and preventing them from developing antibiotic resistance. This discovery may be used in wound healing, medical device and contact lens coating, skin infection treatment and dental fillings. Dr Yi-Yan Yang, Group Leader at IBN said, “The mutations of bacteria and fungi, and misuse of antibiotics have complicated the treatment of microbial infections in recent years. Our lab is focused on developing effective antimicrobial therapy using inexpensive, biodegradable and biocompatible polymer material. With this new advance, we are able to target the most common and challenging bacterial and fungal diseases, and adapt our polymers for a broad range of applications to combat microbial infections.”

More than 80% of all human microbial infections are related to biofilm. This is particularly challenging for infections associated with the use of medical equipment and devices. Biofilms are microbial cells that can easily colonize on almost any tissue or surface. They contribute significantly to hospital-acquired infections, which are among the top five leading causes of death in the United States and account for US$11 billion in healthcare spending each year.

In Singapore, antimicrobial drug resistance is a major healthcare problem because of the extensive use of antibiotics and medical equipment such as intravascular catheters and orthopedic implants in patients. Once in the body, these instruments become potential breeding grounds for bacterial growth. This provides a continuous source of contamination, which could result in prolonged hospitalisation, higher medical costs, and greater risk of death. Research has shown that patients in Singapore with microbial infections were 10.2 times more likely to die during their hospitalisation, had 4.6 times longer hospitalisation, and incurred four times higher hospitalisation cost compared to patients with no infections.

Recently, Dr Yang’s group and their collaborators from IBM Research co-developed a synthetic gel that is biodegradable, biocompatible and cost-effective. With over 90% water content, the hydrogel is highly flexible and easy to adapt for different uses. This gel can target the bacteria and fungi behind seven of the most common hospital-acquired infections such as MRSA (methicillin-resistant Staphylococcus aureus), VRE (vancomycin-resistant enterococcus), multidrug-resistant Acinetobacter baumannii and Klebsiella pneumoniae, E. coli, Candida albicans and Cryptococcus neoformans fungi.

This new gel is comprised of  a polymer material jointly developed by IBN and IBM Research in 2010. When mixed with water and heated to body temperature, the polymers form spontaneously into a moldable gel, due to the self-associative interactions between the polymer molecules. This allows the hydrogel to target multidrug-resistant biofilms at various parts of the body and surfaces without being flushed away. Once the antimicrobial function is activated and performed, the biodegradable gel can be naturally eliminated by the body.

Source: A*STAR

Related Posts Plugin for WordPress, Blogger... Yvonne Klöpping

Tags: , ,

Bookmark and Share